Part Number Hot Search : 
MCP6041T TMS320 TDA5145 AD2710 FN2414 NDB610AE F1220 40237
Product Description
Full Text Search
 

To Download IRF7107 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 PD - 9.1099B
PRELIMINARY
IRF7107
N-CHANNEL MOSFET 1 8
HEXFET(R) Power MOSFET
Advanced Process Technology Ultra Low On-Resistance Dual N and P Channel Mosfet Surface Mount Available in Tape & Reel Dynamic dv/dt Rating Fast Switching Description
Fourth Generation HEXFETs from International Rectifier utilize advanced processing techniques to achieve the lowest possible on-resistance per silicon area. This benefit, combined with the fast switching speed and ruggedized device design for which HEXFET Power MOSFETs are well known, provides the designer with an extremely efficient device for use in a wide variety of applications. The SO-8 has been modified through a customized leadframe for enhanced thermal characteristics and multiple-die capability making it ideal in a variety of power applications. With these improvements, multiple devices can be used in an application with dramatically reduced board space. The package is designed for vapor phase, infra-red, or wave soldering techniques. Power dissipation of greater than 0.8W is possible in a typical PCB mount application.
N-Ch
D1 D1 D2 D2
P-Ch
-20V
S1 G1 S2 G2
2
7
VDSS
20V
3
6
4
5
RDS(on) 0.125 0.160 ID 3.0A -2.8A
P-CHANNEL MOSFET
Top View
SO-8
Absolute Maximum Ratings
Max.
N-Channel ID @ TC = 25C ID @ TC = 70C IDM PD @TC = 25C VGS dv/dt TJ, TSTG Continuous Drain Current, V GS @ 10V Continuous Drain Current, V GS @ 10V Pulsed Drain Current Power Dissipation Linear Derating Factor Gate-to-Source Voltage Peak Diode Recovery dv/dt Junction and Storage Temperature Range 3.0 2.5 10 2.0 0.016 20 3.0 -55 to + 150 -1.3 P-Channel -2.8 -2.3 -10 A
V V/ns C
Thermal Resistance
Parameter
RJA Junction-to-Ambient (PCB Mount)**
Min.
----
Typ.
----
Max.
62.5
Units
** When mounted on 1" square PCB (FR-4 or G-10 Material). For recommended footprint and soldering techniques refer to application note #AN-994.
Revision 3
77
IRF7107
Electrical Characteristics @ TJ = 25C (unless otherwise specified)
Parameter V(BR)DSS Drain-to-Source Breakdown Voltage Min. 20 -20 -- -- -- N-Ch -- -- P-Ch -- N-Ch 1.0 P-Ch -1.0 N-Ch -- P-Ch -- N-Ch -- P-Ch -- N-Ch -- P-Ch -- N-P -- N-Ch -- P-Ch -- N-Ch -- P-Ch -- N-Ch -- P-Ch -- N-Ch -- P-Ch -- N-Ch -- P-Ch -- N-Ch -- P-Ch -- N-Ch -- P-Ch -- N-P -- N-P -- N-Ch -- P-Ch -- N-Ch -- P-Ch -- N-Ch -- P-Ch -- N-Ch P-Ch N-Ch P-Ch Typ. Max. -- -- -- -- 0.037 -- 0.015 -- -- 0.125 -- 0.250 -- 0.160 -- 0.300 -- -- -- -- 4.4 -- 3.3 -- -- 2.0 -- -2.0 -- 25 -- -25 -- 100 9.1 25 11 25 1.2 -- 1.8 -- 2.5 -- 3.5 -- 5.0 15 12 40 10 20 19 40 29 50 42 90 22 50 42 63 4.0 -- 6.0 -- 300 -- 320 -- 260 -- 300 -- 62 -- 95 -- Units V V/C
V(BR)DSS/TJ Breakdown Voltage Temp. Coefficient
RDS(ON)
Static Drain-to-Source On-Resistance
VGS(th) gfs
Gate Threshold Voltage Forward Transconductance
V S
IDSS IGSS Qg Qgs Qgd td(on) tr td(off) tf LD LS Ciss Coss Crss
Drain-to-Source Leakage Current Gate-to-Source Forward Leakage Total Gate Charge Gate-to-Source Charge Gate-to-Drain ("Miller") Charge Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Internal Drain Inductace Internal Source Inductance Input Capacitance Output Capacitance Reverse Transfer Capacitance
A nA
Conditions VGS = 0V, ID = 250A VGS = 0V, ID = -250A Reference to 25C, ID = 1mA Reference to 25C, ID = -1mA VGS = 10V, ID = 3.0A VGS = 4.5V, ID = 1.50A VGS = -10V, ID = -3.0A VGS = -4.5V, ID = -1.5A VDS = VGS, ID = 250A VDS = VGS, ID = -250A VDS = 15V, ID = 3.0A VDS = -15V, ID = -3A VDS = 16V, VGS = 0V VDS = -16V, VGS = 0V VDS = 16V, VGS = 0V, TJ =125C VDS = -16V, VGS = 0V, TJ = 125C VGS = 20V N-Channel ID = 2.3A, VDS = 10V, VGS = 10V
nC P-Channel ID = -2.3A, VDS = -10V, VGS = -10V N-Channel VDD = 20V, ID = 1.0A, RG = 6.0, RD = 20 ns P-Channel VDD = -20V, ID = -1.0A, RG = 6.0, RD = 20 nH Between lead tip and center of die contact N-Channel VGS = 0V, VDS = 15V, = 1.0MHz pF P-Channel VGS = 0V, VDS = -15V, = 1.0MHz
Source-Drain Ratings and Characteristics
Parameter IS ISM VSD trr Qrr ton Continuous Source Current (Body Diode) Pulsed Source Current (Body Diode) Diode Forward Voltage Reverse Recovery Time Reverse Recovery Charge Forward Turn-On Time N-Ch P-Ch N-Ch P-Ch N-Ch P-Ch N-Ch P-Ch N-Ch P-Ch N-P Min. Typ. Max. Units Conditions -- -- 1.7 -- -- -1.6 A -- -- 10 -- -- -10 -- 0.90 1.2 T J = 25C, IS = 1.7A, VGS = 0V V -- -1.4 -1.6 T J = 25C, IS = -1.3A, VGS = 0V -- 69 100 ns N-Channel -- 69 100 T J = 25C, IF = 1.25A, di/dt = 100A/s -- 58 120 nC P-Channel T J = 25C, IF = -1.25A, di/dt = 100A/s -- 64 96 Intrinsic turn-on time is neglegible (turn-on is dominated by LS+LD)
Notes: Repetitive rating; pulse width limited by max. junction temperature. ( See fig. 11 )
N-Channel ISD 2.3A, di/dt 100A/s, V DD V(BR)DSS, TJ 150C P-Channel ISD -1.25A, di/dt 50A/s, VDD V(BR)DSS, TJ 150C Pulse width 300s; duty cycle 2%.
78
IRF7107
100
I , Drain-to-Source Current (A) D
10
4.5V
I , Drain-to-Source Current (A) D
VGS 15V 10V 8.0V 7.0V 6.0V 5.5V 5.0V BOTTOM 4.5V TOP
100
VGS 15V 10V 8.0V 7.0V 6.0V 5.5V 5.0V BOTTOM 4.5V TOP
10
4.5V
1
1
0.1 0.01
20s PULSE WIDTH TJ = 25C
0.1 1 10
A
100
0.1 0.01
20s PULSE WIDTH TJ = 150C
0.1 1 10 100
A
VDS , Drain-to-Source Voltage (V)
VDS , Drain-to-Source Voltage (V)
Fig 1. Typical Output Characteristics, TJ = 25oC
100
Fig 2. Typical Output Characteristics, TJ = 150oC
2.0
R DS(on) , Drain-to-Source On Resistance (Normalized)
I D = 3.0A
I D , Drain-to-Source Current (A)
1.5
TJ = 25C TJ = 150C
1.0
0.5
10 4 5 6 7
VDS = 15V 20s PULSE WIDTH
8 9 10
A
0.0 -60 -40 -20 0 20 40 60 80
VGS = 10V
100 120 140 160
A
VGS , Gate-to-Source Voltage (V)
TJ , Junction Temperature (C)
Fig 3. Typical Transfer Characteristics
800
Fig 4. Normalized On-Resistance Vs. Temperature
20
VGS , Gate-to-Source Voltage (V)
V GS = 0V, f = 1MHz C iss = Cgs + C gd , Cds SHORTED C rss = C gd C oss = C ds + C gd
I D = 2.3A VDS = 10V
16
C, Capacitance (pF)
600
Coss
12
400
Ciss
8
200
Crss
4
0 1 10 100
A
0 0 2 4 6
FOR TEST CIRCUIT SEE FIGURE 11
8 10 12 14
A
VDS , Drain-to-Source Voltage (V)
Q G , Total Gate Charge (nC)
Fig 5. Typical Capacitance Vs. Drain-to-Source Voltage
79
Fig 6. Typical Gate Charge Vs. Gate-to-Source Voltage
IRF7107
100
100
ISD , Reverse Drain Current (A)
OPERATION IN THIS AREA LIMITED BY R DS(on)
10
I D , Drain Current (A)
TJ = 150C TJ = 25C
10 1ms
10ms 1 100ms
1
0.1 0.4 0.6 0.8 1.0
VGS = 0V
1.2
A
0.1
TA = 25C TJ = 150C Single Pulse
0.1 1 10 100
1.4
A
VSD , Source-to-Drain Voltage (V)
VDS , Drain-to-Source Voltage (V)
Fig 7. Typical Source-Drain Diode Forward Voltage
3.0
Fig 8. Maximum Safe Operating Area
2.5
ID, Drain Current (Amps)
2.0
1.5
1.0
0.5
Fig 10a. Switching Time Test Circuit
A
25 50 75 100 125 150
0.0
TA , Ambient Temperature (C)
Fig 9. Maximum Drain Current Vs. Ambient Temperature
Fig 10b. Switching Time Waveforms
Fig 11a. Gate Charge Test Circuit
80
Fig 11b. Basic Gate Charge Waveform
IRF7107
100
-ID , Drain-to-Source Current (A)
10
-I D , Drain-to-Source Current (A)
VGS - 15V - 10V - 8.0V - 7.0V - 6.0V - 5.5V - 5.0V BOTTOM - 4.5V TOP
100
10
VGS - 15V - 10V - 8.0V - 7.0V - 6.0V - 5.5V - 5.0V BOTTOM - 4.5V TOP
-4.5V
-4.5V
1
1
0.1
0.1
0.01 0.01
20s PULSE WIDTH TJ = 25C A
0.1 1 10 100
0.01 0.01
20s PULSE WIDTH TJ = 150C
0.1 1 10
A
100
-VDS , Drain-to-Source Voltage (V)
Fig 12. Typical Output Characteristics, TJ = 25oC
100
Fig 13. Typical Output Characteristics, TJ = 150oC
2.0
-VDS , Drain-to-Source Voltage (V)
R DS(on) , Drain-to-Source On Resistance (Normalized)
I D = -2.8A
-ID , Drain-to-Source Current (A)
1.5
TJ = 25C TJ = 150C
10
1.0
0.5
1 4 5 6 7
VDS = -15V 20s PULSE WIDTH
8 9 10
A
0.0 -60 -40 -20 0 20 40 60 80
VGS = -10V
A
100 120 140 160
-VGS , Gate-to-Source Voltage (V)
TJ , Junction Temperature (C)
Fig 14. Typical Transfer Characteristics
800
Fig 15. Normalized On-Resistance Vs. Temperature
20
-VGS , Gate-to-Source Voltage (V)
V GS = 0V, f = 1MHz C iss = Cgs + C gd , Cds SHORTED C rss = C gd C oss = C ds + C gd
I D = -2.3A VDS = -10V
16
C, Capacitance (pF)
600
C oss Ciss
12
400
8
200
Crss
4
0 1 10 100
A
0 0 4 8
FOR TEST CIRCUIT SEE FIGURE 22
12 16 20
A
-VDS , Drain-to-Source Voltage (V)
Q G , Total Gate Charge (nC)
Fig 16. Typical Capacitance Vs. Drain-to-Source Voltage
81
Fig 17. Typical Gate Charge Vs. Gate-to-Source Voltage
IRF7107
100
100
-ISD , Reverse Drain Current (A)
OPERATION IN THIS AREA LIMITED BY RDS(on)
10
TJ = 150C TJ = 25C
-I D , Drain Current (A)
10 1ms
1
10ms 1 100ms
0.1 0.4 0.8 1.2 1.6
VGS = 0V
A
0.1
2.0
TA = 25C TJ = 150C Single Pulse
0.1 1 10 100
A
-VSD , Source-to-Drain Voltage (V)
-VDS , Drain-to-Source Voltage (V)
Fig 18. Typical Source-Drain Diode Forward Voltage
3.0
Fig 19. Maximum Safe Operating Area
2.5
-ID, Drain Current (Amps)
2.0
1.5
1.0
0.5
Fig 21a. Switching Time Test Circuit
A
25 50 75 100 125 150
0.0
TA , Ambient Temperature (C)
Fig 20. Maximum Drain Current Vs. Ambient Temperature
Fig 21b. Switching Time Waveforms
Fig 22a. Gate Charge Test Circuit
82
Fig 22b. Basic Gate Charge Waveform
IRF7107
100
Thermal Response (Z thJA )
D = 0.50
0.20 10 0.10 0.05 0.02 1 0.01 SINGLE PULSE (THERMAL RESPONSE)
PD M
t
1 t 2
N otes: 1 . D uty fac tor D = t
1
/t
2
0.1 0.00001
2. P ea k TJ = P D M x Z th J A + T A
A
1000
0.0001
0.001
0.01
0.1
1
10
100
t 1 , Rectangular Pulse Duration (sec)
Fig 23. Maximum Effective Transient Thermal Impedance, Junction-to-Ambient
Refer to the Appendix Section for the following: Appendix A: Appendix B: Appendix C: Appendix D: Figure 24, Peak Diode Recovery dv/dt Test Circuit -- See page 329. Package Outline Mechanical Drawing -- See page 332. Part Marking Information -- See page 332. Tape and Reel Information -- See page 336.
83


▲Up To Search▲   

 
Price & Availability of IRF7107

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X